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Abstract.  Mapping forest fires globally is an important task for supporting climate and 18 

carbon cycle studies.  There are two primary approaches to fire mapping: field- and aerial-based 19 

surveys, which are costly and limited in their extent; and satellite remote sensing-based 20 

approaches, which are more cost-effective but pose several interesting methodological and 21 

algorithmic challenges.  In this paper, we describe evaluate a new algorithm framework for 22 

mapping forest fires based on satellite observations from NASA’s Moderate Resolution Imaging 23 

Spectroradiometer (MODIS) instrument.  A systematic comparison and validation against ground 24 

truth sources with alternate approaches across diverse geographic regions demonstrates that our 25 

algorithmic paradigm is able to overcome many of the limitations in both data and methods 26 

employed by prior efforts.  We quantitatively show that the new framework out-performs the 27 

well-known MODIS Burned Area (BA) framework in the states of California (US), Georgia 28 

(US), Yukon, (Canada), and Victoria (Australia).  Results demonstrate that our new framework is 29 

highly robust to noise in one of its primary inputs, MODIS Active Fires (AF), which is known to 30 

have low precision. 31 

 32 

 33 

1.  Introduction 34 

Land cover change is a priority issue for policymakers at the local, national, and 35 

international scale (Solomon et al., 2007).  Land use contributes about 15% of global carbon 36 

dioxide emissions to the atmosphere on an annual basis, and uncertainty in land use change 37 

emissions is the highest of any flux component of the global carbon budget (Friedlingstein et al., 38 

2010).  Policymakers in the United Nations Framework Convention on Climate Change 39 

negotiations have thus agreed to address land use change in a framework for Reducing Emissions 40 

from Deforestation and Degradation (REDD) (Miles and Kapos, 2008).  Consequently, there is a 41 

pressing need to identify strategies for monitoring, reporting, and verifying land use change and 42 

emissions from forest cover disturbances in a timely and accurate manner (DeFries et al., 2006; 43 

Achard et al., 2007).   44 

 45 
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Forest fires are a major land cover change that can be caused by both natural (lightning) or 46 

anthropogenic factors.  Accurate and low-cost fire mapping methods are important for 47 

understanding the frequency and distribution for forest fires (Pan et al., 2011).  While monitoring 48 

fires in near-real time is critical for operational fire management, mapping historical fires in a 49 

spatially explicit fashion is also important for a number of reasons including climate change 50 

studies (e.g., examining the relationship between rising temperatures and frequency of fires), fuel 51 

load management (e.g., deciding when and where to conduct controlled burns), and carbon cycle 52 

studies (e.g., quantifying how much CO2 is emitted by fires for reduction efforts such as UN 53 

REDD). 54 

 55 

There are two primary approaches to mapping forest fires: (1) field surveys combined with 56 

aerial observations, which allow detailed mapping of land cover changes, but are limited in their 57 

spatial extent and temporal frequency because of their high cost (Liu and Cai, 2011); and (2) 58 

satellite remote sensing-based techniques, such as those from NASA’s Moderate Resolution 59 

Imaging Spectroradiometer (MODIS) instrument, which offer the most cost-effective method for 60 

mapping fires.  MODIS data are obtained freely with global repeated coverage.  While numerous 61 

efforts have mapped forest disturbances at local-to-regional scales (including Badarinath  et al., 62 

2011; Bergeron et al., 2004; Cochrane, 2009; Niklasson and Granström, 2000; Potter et al., 2003, 63 

2005 and 2007; Somashekar, 2009; Stocks et al., 2002; Talon et al., 2005), only two spatially 64 

explicit efforts exist that regularly map fires at a global scale: the MODIS Active Fire (AF) and 65 

Burned Area (BA) products (Justice et al., 2011). 66 

  67 

Burned area mapping from remote sensing data is essentially a problem of change (or 68 

anomaly) detection. Such datasets have both temporal and spatial dimensions, and there are two 69 

primary ways to address the problem.  There are approaches that focus on the temporal aspect, 70 

wherein fires are mapped based on time series analysis (Mithal et al., 2008; Roy et al., 2002).  71 

These types of methods usually take into consideration properties such as seasonality, variability 72 

and temporal coherence in a given time series.  On the other hand, there are approaches that treat 73 

the data as a sequence of image snapshots, and image processing-based methods (Brewer et al., 74 

2005; Gitas et al., 2004) are used to detect burned areas.  Such methods commonly take 75 

advantage of the spatial properties inherent in the data, for instance, the fact that burned pixels 76 
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tend to cluster together.  Recently, techniques have been developed for land cover change 77 

detection that utilize both spatial and temporal properties (Giglio et al., 2009; Lhermitte et al., 78 

2008; Lunetta et al., 2006) to take advantage of autocorrelation structures present along both 79 

dimensions in the remote sensing data. 80 

 81 

Nonetheless, satellite remote sensing data poses several challenges, some unique, for 82 

algorithm development, such as (1) the presence of noise and outliers, (2) inaccuracy and 83 

incompleteness of signals, (3) high natural variability and seasonality, (4) influence of climatic 84 

factors, (5) availability of multiple temporal scales. In the case of forest fire mapping, additional 85 

factors include potential obstruction of the signal due to smoke and the similarity of the signal 86 

relative to other types of changes and events, such as logging and wind damage. 87 

 88 

In this paper, we introduce a new spatio-temporal detection framework for forest fire mapping 89 

that is both robust and computationally scalable to large regions. Specifically, the proposed 90 

approach is unsupervised in nature and exploits both the temporal and spatial structure in the data 91 

to combine multiple sources of information.  Using independent wildfire perimeter data sets, we 92 

have comprehensively evaluated our approach, as well as those from alternate methods, across 93 

different forest climatic zones.  Finally, we examined specific properties of the MODIS BA 94 

algorithm and show how our approach is able to overcome some of its limitations. 95 

 96 

2.  Satellite Remote Sensing Data  97 

Global remote sensing datasets are available from a variety of sources at different 98 

resolutions. Our proposed forest fire mapping framework is based on two remotely sensed 99 

composite data products from the MODIS instrument aboard NASA’s Terra satellite, which are 100 

available for public download (U. S. Geological Survey, 2011).  Specifically, we use the 101 

Enhanced Vegetation Index (EVI) from the MODIS 16-day Level 3 1-km Vegetation Indices 102 

(MOD13A2) and the Active Fire (AF) from the MODIS 8-day Level 3 1-km Thermal Anomalies 103 

& Fire products (MOD14A2).  EVI measures “greenness” (area-averaged canopy photosynthetic 104 

capacity) as a proxy for the density of vegetated biomass at a particular location (Figure 1).  The 105 

AF product is designed to identify thermal anomalies from the middle infrared spectral 106 
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reflectance bands (Justice et al., 2011) and is used heavily in operational situations by fire-107 

fighting agencies around the world.  In order to separate forests from other land cover types, we 108 

use the MODIS Vegetation Continuous Fields (VCF) dataset (MOD44B), which provides the 109 

percent tree cover for every pixel. MODIS Level 3 products are provided on a global 1km 110 

sinusoidal grid in 10∘×10∘ tiles.  For this study, we focus on subsets of the global MODIS data 111 

based on the available wildfire perimeter information for validation. 112 

 113 

Fire-related satellite data products broadly fall into two categories: active fire products, 114 

which capture the location and intensity of fires burning at the time of observation (the 115 

prototypical example being the AF product); and burned area products, which map areas that 116 

were burned by fires based on historical observations. In the following section, we review two 117 

exisiting algorithms for mapping burned areas. 118 

 119 

2.1. The V2DELTA Algorithm 120 

Mithal et al. (2011a) presented a time series change detection algorithm that incorporates 121 

natural seasonal variation into the change detection framework. The algorithm, called 122 

V2DELTA, identifies abrupt forest disturbances using MODIS EVI as an input. More 123 

specifically, the V2DELTA compares a drop in EVI the variability in a fixed “training” window, 124 

thereby providing a mechanism to ascribe significance to any given drop. This relies on the 125 

assumption that EVI values in the initial window were not affected by a land cover change, thus 126 

enabling the algorithm to differentiate abrupt changes from naturally occurring vegetation 127 

changes.  While V2DELTA detected many types of forest disturbances (Mithal et al., 2011b), it 128 

failed to distinguish forest fires from other land cover changes, such as those caused by non-fire 129 

inducing climatic factors (e.g., droughts). 130 

 131 

2.2. The BA Algorithm 132 

The burned area approach (henceforth called BA) presented by Giglio et al. (2009) can be 133 

viewed as a semi-supervised Bayesian classification method with two classes: burned and 134 

unburned.  The technique builds on key concepts and ideas developed over several years by 135 
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Giglio et al., (2006) and others (Fraser et al., 2000; George et al., 2006; Loboda et al., 2007; Roy  136 

et al., 1999).  The BA algorithm is run on a regular basis using the latest spectral reflectance and 137 

the MODIS AF product.  The output is released by the University of Maryland as a product 138 

called MODIS Direct Broadcast Monthly Burned Area Product (MCD64A1).  139 

 140 

The key steps of the BA algorithm are outlined below: 141 

1. Representative sets of samples for the burned and unburned classes are constructed. The 142 

sample pixels for each class are discovered using conservative heuristics which label pixels 143 

as unburned or burned if they pass a set of conditions.  144 

2. The burned class is further enriched with closely related pixels from the dataset, while the 145 

unburned class is refined by pruning pixels that are geographically close to burned training 146 

pixels.  147 

3. A statistic that estimates the daily loss in vegetation (ΔVI) is computed for all training 148 

pixels.  149 

4. The conditional probability distribution of the vegetation loss statistic is estimated for both 150 

the burned as well as the unburned class, i.e., P(ΔVI|burned) and P(ΔVI|unburned).  151 

5. Bayes’ Rule is applied to obtain the posterior probability of a pixel belonging to the burned 152 

class.  153 

There are two major limitations in the BA algorithm.  First, the burned and unburned training 154 

data is very expensive to obtain manually, and is difficult to generate automatically.  Second, due 155 

to the inherent nature of forest fires (i.e., they happen rarely in both spatial and temporal 156 

dimensions), the burned and unburned classes are often highly imbalanced.  Since the Bayesian 157 

classifier is biased toward the majority class, the recall will suffer when the classes are 158 

imbalanced.   159 

 160 

In the BA algorithm framework, estimating two separate distributions for the rare and 161 

majority classes is likely to be affected by problems arising from small sample size and over-162 

fitting. In contrast, a one-class approach of building a null distribution over the normal population 163 

and detecting rare events as anomalies in the distribution is more robust to noise and outliers as it 164 
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utilizes a larger sample size.  We note that “normal” here denotes the unburned population which 165 

may be unchanged or exhibit changes unrelated to fire (logging, drought, etc.). 166 

 167 

3.  Methods 168 

In a new stratified framework for mapping forest fires, we have employed multiple, 169 

complementary scoring mechanisms using both MODIS EVI time series and the MODIS AF 170 

product.  The approach begins by generating the high stratum product, which consists of pixels 171 

that exhibit both abrupt change in EVI and an event in the AF signal at the same time.  This 172 

stratum is then augmented by very similar events in close proximity to generate the middle 173 

stratum product. The lowest stratum product is generated by including loosely similar events in a 174 

spatial window around the other two strata. Figure 2 shows a flowchart of this framework and 175 

each task is described in detail below. 176 

 177 

3.1.  Forest Fire Detection Algorithms 178 

The algorithm begins operation by looking for fire events using an initial set of candidates 179 

associated with the most confident stratum.  Since the AF contains information about thermal 180 

anomalies, it is arguably a good choice for selecting initial candidates.  AF products restrict the 181 

search space by pruning out potential false positive examples caused by other land cover changes 182 

such as conversion from forest to farm, or changes attributed to climatic factors such as droughts, 183 

etc.  Once the candidates have been initialized with events having high AF values (≥ 7), we use 184 

an array of scoring mechanisms on the EVI time series to determine the significance of the given 185 

event as a forest fire. The intent behind using multiple scoring mechanisms is to cover multiple 186 

facets of information about the forest fire, where each score captures a distinct characteristic of 187 

the EVI change at a forest fire event. Specifically, we introduce the following scoring framework: 188 

 189 

3.1.1.  K-month Delta (KD) 190 

K-month Delta (KD) is an extension of the V2DELTA, discussed above. Similar to V2DELTA, 191 

the inter-annual variation (IAV) is defined as  192 

IAV(t)=µ(EVI(t−sl,K))−µ(EVI(t,K)) 193 
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where, sl is the number of time steps in one annual EVI segment (23 in our case), and K is the 194 

window size of segments being compared. 195 

 196 

By modeling EVI as the combination of yearly trend and Gaussian noise which indicates the 197 

normal variations attributed to seasonal changes and sensor noise, we assume that IAV follows a 198 

Gaussian distribution. Specifically, we expect the distribution to be N(0,σ2)  when there is no 199 

land cover change. Therefore, the KD score at time step t is given by  200 

KD(t) =
IAV (t)

!
 201 

which is the z-score of IAV. Here, σ is estimated based on the data in a four year window 202 

preceding t using bootstrapping (this makes the algorithm more robust than V2DELTA). K is set 203 

to 12 months in the proposed approach. 204 

 205 
3.1.2. Local Instant Drop (LID) 206 

Forest fires are commonly observed as instantaneous drops in EVI time series, but sometimes 207 

these drops may not persist for a long time period (more than two years), i.e. the observed 208 

greenness recovers rapidly. Generally, these sudden drops in the EVI are much higher than the 209 

normal variations attributed to climatic seasonality and sensor noise. The Local Instant Drop 210 

(LID) algorithm scores the instantaneous drop at time step t in EVI by comparing the amount of 211 

the drop around time step t with the normal variations (NVar). The algorithm accounts for noise 212 

and outliers occurring in the temporal locality of a candidate fire, as well as the seasonal context 213 

in EVI to improve the robustness of the scoring algorithm. The LID score is given by the 214 

following equation:  215 

LID(t) =
EVI(t !1,1)!EVI(t +1,1)

NVar
 216 

where, NVar is the largest drop that occurs in the temporal neighborhood (of size 3) and in the 217 

previous two year history. In order to account for the seasonality of EVI, only the time steps 218 

within a small window (of size 1) in the previous years around (for a given time step) are 219 

considered. 220 

 221 
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3.1.3.  Near Drop (ND) 222 

The Near Drop (ND) algorithm measures the change in the average EVI, before and after 223 

a candidate forest fire event at time step t. The ND score is given by the following equation:  224 

ND=µ(EVI(t-k,k))−µ(EVI(t+1,k)) 225 

where k=3. ND captures the instantaneous nature of the drop in EVI. As the only score which 226 

reflects the real amount of drop in EVI, ND is well-suited as a filter in our framework to be 227 

satisfied by a candidate fire event detected by other scoring mechanisms, even though it is 228 

affected by noise and outliers. 229 

 230 

3.1.4.  Spatial Growing Algorithms 231 

The AF product can fail to detect forest fire events which do not register a thermal anomaly 232 

because of smoke or satellite overpass timing.  Thus, the initial candidate pixels might suffer 233 

from low coverage. To overcome this limitation, we exploited the inherent spatio-temporal 234 

autocorrelation of forest fire events to increase coverage.  Since events corresponding to the same 235 

forest fire occur in close proximity of space and time, we exploit this property by searching for 236 

candidate fire events around the initial candidates classified as forest fires by the scoring 237 

mechanism above. In the current framework, we consider the 24 spatial neighbors in a 5×5 238 

spatial grid around the initial candidates, with a temporal constraint of being within one time step 239 

from the change time of the initial candidate fire event. We then apply our scoring mechanism on 240 

the new pool of candidate events with exactly the same scoring criteria as we used for detecting 241 

initial candidate forest fire events. We iteratively grow in a spatial neighborhood to exhaustively 242 

detect candidate forest fire events. They represent candidate forest fire events (middle stratum) 243 

which have fire characteristics in the EVI but were not initial candidates because of the absence 244 

of AF detection. 245 

 246 

The new framework creates a pool of candidate forest fire events with a relaxed scoring 247 

criteria indicating a lower confidence. We accept events to be part of this pool (lowest stratum) if 248 

they exhibit a positive ND and either a moderately large LID (≥1.5), or a moderately large KD 249 

(≥1.5) in conjunction with a moderate LID (≥1).  Thus, we iteratively grow in a spatial 250 

neighborhood (5×5 grid) to exhaustively include any probable candidate fire event pixels.  251 
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 252 

3.2.  Algorithm Performance Evaluation 253 

We examined the performance of AF, BA, the new forest fire detecion algorithms detailed 254 

above in several regions around the world, including the states of California (United States), 255 

Georgia (United States), Yukon (Canada) and Victoria (Australia).  These geographic areas 256 

represented diverse regions with differing forest cover types, topography, hydrology, and MODIS 257 

data quality characteristics. The following describes the independent evaluation data used in this 258 

study and of the evaluation methodology. 259 

3.2.1. Forest Fire Evaluation Data Sources 260 

For each region considered in our evaluation, we obtained spatially explicit evaluation data 261 

sets from government agencies responsible for monitoring and managing forests and wildfires. 262 

The evaluation data were in the form of wildfire perimeter polygons, each of which is associated 263 

with the date of burning. The regions studied in this paper and the respective sources of fire 264 

polygon data are listed in Table 1.  265 

 266 

Although government agencies make their best effort in documenting historical fires, wildfire 267 

perimeter datasets are neither complete nor without error, due to finite resources available to any 268 

mapping agency. However, inaccuracies and incompleteness are represented only in a small 269 

portion of the evaluation data, and these datasets are still useful for quantitatively comparing 270 

remote sensing detection methods across large spatial regions. The AF, BA, and MODIS EVI 271 

products are each precisely geo-referenced by the latitude and longitude values of their pixel 272 

centers. We considered a location to be positive for a forest fire event if the corresponding pixel 273 

center fell inside a wildfire perimeter polygon (Table 1).  Similarly, a pixel was considered to be 274 

unburned (forming the negative class) only if the entire pixel fell outside a wildfire perimeter 275 

polygon. The remaining pixels (which partially overlap polygon boundaries) were discarded from 276 

the evaluation framework to avoid ambiguity. 277 

 278 
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Since our primary focus is on detecting forest fires, we utilized the MODIS Vegetation 279 

Continuous Fields (VCF) dataset (MOD44B) which contains the percentage tree cover 280 

information. We only consider pixels with high percentage tree cover (i.e., ≥ 20%) in our 281 

evaluation scheme, a threshold commonly cited to separate forest from non-forest covers 282 

(Bandyopadhyay et al., 2011; Giglio et al., 2009). 283 

 284 

3.2.2  Evaluation Methodology 285 

In this paper, we use precision and recall as evaluation metrics for quantitatively 286 

comparing the performance of AF, BA, the new forest fire detection algorithms. These two well-287 

known metrics are used to evaluate the performance of algorithms in information retrieval, 288 

machine learning and data mining (Tan et al., 2006).  Each algorithm provides a set of positive 289 

and negative events that it detects, which is evaluated using fire perimeter polygons to obtain the 290 

number of true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN) 291 

for each algorithm (as shown in Table 2).  We note that detection of a TP event means that the 292 

pixel fell entirely inside a polygon and the time of change agrees with the fire polygon date.  293 

 294 

The precision (p) and recall (r) values for each algorithm were determined by the 295 

equations:  296 

 297 

Values of p and r closer to 1.0 were indicate a higher fraction of retrieved fire events that 298 

were relevant (TP, i.e., pixel areas detected as burned inside the fire polygon perimeters), and the 299 

fraction of relevant (TP) instances that are retrieved, respectively (Olson and Delen, 2008). Stated 300 

in another way, precision results will be highest where the number of FP results (i.e., pixel areas 301 

detected as burned outside the fire polygon perimeters) are lowest, and recall results will be 302 



12 

highest where the number of FN results (i.e., pixel areas not detected as burned inside the fire 303 

polygon perimeters) are lowest. 304 

4.  Results 305 

The new forest fire detection algorithms introduced in this study consistently outperformed 306 

the V2DELTA and AF algorithms in all forest regions evaluated (Table 3).  The new algorithms 307 

(finalized with the result labelled Level 3 n Table 3) initially achieved high precision by using 308 

strict criteria (Level 1 and Level 2), then increased recall results through Spatial Growing using 309 

lower thresholds (Level 3), and finally recovered the majority of the precision by discarding FP 310 

results using its anomaly detection approach.  Precision for the Level 3 results were above 0.92 in 311 

all regions; recall results were above 0.93 in California and the Yukon and above 0.65 in all 312 

regions.  Although the AF and V2DELTA algorithms produced comparable recall results to our 313 

Level 3 product in some cases, they both tended to generate a large number of FP results (i.e., 314 

pixel areas detected as burned outside the fire polygon perimeters), which reduced their precision 315 

results markedly.  This was not unexpected, particularly given that V2DELTA was developed as 316 

a more general land cover change detection method and the AF product may detect fires in non-317 

forest areas.   318 

 319 

The new forest fire detection algorithms generally performed as well, and in some cases 320 

notably better, than the BA algorithm.  A close examination of both FP and FN results revealed 321 

that the two approaches sometime produced different errors in the same geographical region. 322 

Two particular limitations of the BA algorithms were illustrated by the results for Georgia (Table 323 

3c).   The AF algorithm also showed low precision in Georgia, and since BA and AF both 324 

generate training data, we hypothesize that BA produces error in cases where the precision of AF 325 

was also poor.  326 

 327 

We observed a peculiar case where both precision and recall are higher for the “low-quality” 328 

BA, and postulate that this counterintuitive observation can be explained by the fact that MODIS 329 

pixel values in the immediate (temporal) neighborhood of a forest fire tend to be of lower quality, 330 

due largely to obstruction from smoke.  We hypotheseize that, since BA uses high quality 331 
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observations within a limited window surrounding the fire date, the algorithm does not have 332 

sufficient information and is thus unable to correctly classify such pixel areas.  To test this 333 

hypothesis, we generated two histograms of the pixel reliability extracted from the MODIS 334 

Quality Assurance (QA) fields (Figure 4), one for the TPs of the high-quality product, and 335 

another for the FNs of the high-quality product which are true positives in the low-quality 336 

version.  Pixel areas that the BA correctly identified were, by and large, of high quality in the QA 337 

fields, although BA was able to take advantage of the additional information from lower-quality 338 

inputs and thus detect high proportion of burned pixels. 339 

 340 

Mapped examples for the new framework results show that large fire perimeters delinated by 341 

national agencies in the U. S. and Canada were replicated closely in California and the Yukon 342 

with TP pixels (Figure 5).  The extremely steep topography (500 m elevation changes over less 343 

than 2 km inland form the ocean shore) in the coastal Big Sur, California wildfire example may 344 

explain the small number of FN results within the fire perimeters from the new framework 345 

algorithms.  346 

 347 

Results of forest fire detection algorithms introduced in this study showed that a number of 348 

pixel areas exhibiting strong fire characteristics were not included in the fire perimeter polygons 349 

from Victoria and California (Figure 6a).  Such pixels were incorrectly counted as FP results in 350 

our evaluation scheme.  In addition, we encountered a small number of FP results which 351 

exhibited other types of land cover changes (Figure 6b), and were incorrectly included in the 352 

highest stratum of detected points. This limitation can be overcome by applying context-based 353 

anomaly detection on the entire spectrum of detected events, not just the lowest strata. 354 

 355 

Most FN results of the forest fire detection algorithms introduced in this study consist of 356 

vegetation types with high natural variability and noisy EVI, which got poorly scored by the 357 

proposed algorithms and went undetected (Figure 7a).  Other FN results can be attributed to weak 358 

characteristics of fire in the EVI time series, with examples shown from California (Figure 8a) 359 

and Georgia (Figure 8b)  Other FN results in Victoria exhibited atypical characteristics in their 360 

EVI time series, which appeared spurious and were not detected by the proposed approach 361 

(Figure 7b).  In addition, some of the FN results were pruned during the anomaly detection phase 362 
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due to lack of adequate number of similar (unburned) neighbors required to construct the normal 363 

distribution.  This poses a challenge in performing context-based anomaly detection when the 364 

number of similar objects is small. 365 

  366 

 367 

5.  Discussion 368 

In this paper, we described and evaluated a framework for forest fire mapping that is 369 

unsupervised in nature and has the potential to be used globally, providing spatially explicit wall-370 

to-wall coverage. We quantitatively showed that the algorithm framework performs better than 371 

well-known BA framework in the states of California (US), Yukon, (Canada), Victoria 372 

(Australia) and much better in Georgia (US).  There were also complementarities between the 373 

two frameworks.  We also showed that the new framework is highly robust to noise in one of its 374 

primary inputs, AF, which is known to have low precision. 375 

 376 

The forest fire mapping framework proposed in this paper faces limitations in a number of 377 

scenarios, leading to both FP and FN results. These include situations where (1) the vegetation 378 

rapidly recovers after a fire or if there are multiple fires in short succession (FN), (2) the loss in 379 

vegetation is insignificant (FN), and (3) the vegetation has high natural variability (FP and FN). 380 

Each of these scenarios poses distinct challenges for our current fire detection framework. 381 

Additionally, if a fire polygon does not contain any pixel with an AF, it will not be detected by 382 

our framework (FN).  However, we observed that such instances happen only in small polygons, 383 

and hence its effect on the performance of the proposed framework is insignificant.  384 

 385 

We are in effect considering less information than the BA framework, yet we are able to 386 

achieve comparable performance. Thus, there is reason to believe that some of the limitations 387 

above will be addressed by increasing the spatial and temporal resolution to 250-m and daily, 388 

respectively.  In particular, we expect that smaller fires (250-m data has sixteen times more detail 389 

than 1-km resolution data) and pixels that exhibit rapid recovery (because of compositing, 390 

neighboring time steps can be up to a month apart in the current 16-day data) can be detected 391 
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with higher resolution data. We have not used higher resolution data in this paper, since these are 392 

not standard MODIS products and hence require extensive processing to generate. 393 

 394 

 395 

While the current framework already performs relatively well in a variety of geographies, 396 

there are a number of interesting directions for future work. The data inputs used in this paper, 397 

EVI time series and AF, have temporal resolutions of 16 and 8 days, respectively.  Both of these 398 

inputs can be computed on a daily basis, which is likely to provide much more information in 399 

many cases. This information can be exploited to identify the precise day of the fire and to ensure 400 

temporal coherence between neighboring pixels. Challenges with daily data include increase in 401 

the noise level and additional effort required to generate a daily EVI (since this is not a standard 402 

MODIS product). Another potential extension is to use BA (and similar products) as an input, 403 

taking advantage of complementarities that exist between the frameworks.  Finally, the anomaly 404 

scoring that is currently applied to the lowest stratum events can also be extended to the middle 405 

and highest stratum to further increase the precision in these strata. 406 

 407 
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 546 

Table 1.  Regions studied in this paper and their respective sources of historical wildfire 547 

evaluation data.  The total number of 1-km MODIS pixels center locations falling entirely inside 548 

(positives) or entirely outside (negatives) wildfire polygon perimeters are included. 549 

 550 

Region References Positives Negatives 
California (US) FRAP (2011) 4597 597208 

Georgia (US) NFDSC (2011) and USDA (2011) 2003 425528 

Yukon (Canada) Canadian National Fire Database 

(2011) 

5597 697208 

Victoria (Australia) Friend et al. (2003) and Department 

of Sustainability and Environment, 

Victoria, (2011) 

17190 604391 

 551 

 552 

Table 2.  Fire Polygon Evalaution and Confusion Matrix. 553 

 554 

 Predicted 

 Fire No Fire 

Evaluation Data Fire TP FN 

 No Fire FP TN 

   555 

556 
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 556 
Table 3.  Algorithm evaluation results for (a) California (US), (b) Yukon (Canada), (c) Georgia 557 

(US), and (d) Victoria (Australia). 558 

(a) California (US) 559 
Algorithm Precision Recall TP FP FN 

Level 1 0.989 0.797 1765 20 449 
Level 2 0.982 0.842 1864 34 350 
Level 3 0.909 0.936 2073 208 141 

BA highQ 0.982 0.925 2047 38 167 
BA lowQ 0.978 0.925 2047 46 167 

AF 0.463 0.890 1970 2286 244 
V2DELTA 0.605 0.717 1588 1035 626 

 560 

(b) Yukon (Canada) 561 
Algorithm Precision Recall TP FP FN 

Level 1 0.999 0.289 975 1 2401 
Level 2 0.988 0.421 1422 17 1954 
Level 3 0.983 0.975 3293 58 83 

BA highQ 0.897 0.778 2626 303 750 
BA lowQ 0.912 0.957 3231 313 145 

AF 0.801 0.663 2237 556 1139 
V2DELTA 0.522 0.868 2930 2679 446 

 562 

(c) Georgia (US) 563 
Algorithm Precision Recall TP FP FN 

Level 1 0.982 0.475 951 17 1052 
Level 2 0.978 0.600 1201 27 802 
Level 3 0.965 0.706 1414 51 589 

BA highQ 0.468 0.193 386 438 1617 
BA lowQ 0.699 0.674 1350 581 654 

AF 0.152 0.645 1291 7197 712 
V2DELTA 0.349 0.464 930 1738 1073 

 564 

(d) Victoria (Australia) 565 
Algorithm Precision Recall TP FP FN 

Level 1 0.997 0.420 7192 21 9939 
Level 2 0.995 0.564 9654 51 7477 
Level 3 0.950 0.657 11257 594 5874 

BA highQ 0.993 0.692 11850 83 5282 
BA lowQ 0.993 0.696 11919 88 5212 

AF 0.854 0.532 9118 1554 8013 
V2DELTA 0.907 0.555 9510 975 7621 

 566 

 567 
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 568 

  569 

  570 

Figure 1.  MODIS EVI time series at the location of the Basin Complex fire, which was started 571 

by lightning near Big Sur, CA in June 2008. 572 

 573 

 574 
575 
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 575 
Figure 2.  Flowchart illustrating the new framework for mapping forest fires. 576 
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 582 
 583 

Figure 3.  Example of context-based anomaly detection, based on the distribution of the ND 584 

scores of a fire candidate location and its neighbors. 585 
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 587 

588 



26 

Figure 4.  A comparison of histograms for pixel reliability of the BA algorithm and sensitivity to 588 
MODIS data quality.  The top histogram shows TPs of the high-quality MODIS pixels, and the 589 
bottom histogram shows the FNs of the MODIS high-quality pixels. 590 
 591 
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 598 
 599 
 600 
Figure 5.  Map of fire polygon perimeters and L3 algorithm results (Table 3) in (a) California 601 
(US) and (b) Yukon Province (Canada). 602 
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 624 
 625 

Figure 6.  False positives (FP) results from the new forest fire detection approach. 626 

 627 

 628 

a.  Missed fire event in Victoria, Australia 629 

  630 

b.  Gradual land cover change in Georgia (US) 631 
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Figure 7.  False negatives (FN) results in Victoria, Australia 636 

 637 

  638 

a. Vegetation with high variability (event occurred in 2007) 639 

  640 

b.  Atypical characteristic of fire (event occurred in 2009) 641 
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 643 

Figure 8. False negatives (FN) results due to weak fire characteristics 644 
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FN in Georgia (event occurred in 2007) 651 
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